Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems

نویسندگان

  • Nikolaus Hansen
  • Raymond Ros
  • Nikolas Mauny
  • Marc Schoenauer
  • Anne Auger
چکیده

This paper investigates the behavior of PSO (particle swarm optimization) and CMA-ES (covariance matrix adaptation evolution strategy) on ill-conditioned functions. The paper also highlights momentum as important common concept used in both algorithms and reviews important invariance properties. On separable, ill-conditioned functions, PSO performs very well and outperforms CMA-ES by a factor of up to five. On the same but rotated functions, the performance of CMA-ES is unchanged, while the performance of PSO declines dramatically: on non-separable, ill-conditioned functions we find the search costs (number of function evaluations) of PSO increasing roughly proportional with the condition number and CMA-ES outperforms PSO by orders of magnitude. The strong dependency of PSO on rotations originates from random events that are only independent within the given coordinate system. The CMA-ES adapts the coordinate system where the independent events take place and is rotational invariant. We argue that invariance properties, like rotational invariance, are desirable, because they increase the predictive power of performance results by inducing problem equivalence classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PSO Facing Non-Separable and Ill-Conditioned Problems

This report investigates the behavior of particle swarm optimization (PSO) on ill-conditioned functions. We find that PSO performs very well on separable, ill-conditioned functions. If the function is rotated such that it becomes non-separable, the performance declines dramatically. On non-separable, ill-conditioned functions we find the search costs (number of function evaluations) of PSO incr...

متن کامل

A Comparative Analysis of FSS with CMA-ES and S-PSO in Ill-Conditioned Problems

This paper presents a comparative analyzes between three search algorithms, named Fish School Search, Particle Swarm Optimization and Covariance Matrix Adaptation Evolution Strategy applied to ill-conditioned problems. We aim to demonstrate the effectiveness of the Fish School Search in the optimization processes when the objective function has ill-conditioned properties. We achieved good resul...

متن کامل

Adaptive Encoding: How to Render Search Coordinate System Invariant

This paper describes a method for rendering search coordinate system independent, Adaptive Encoding. Adaptive Encoding is applicable to any iterative search algorithm and employs incremental changes of the representation of solutions. One attractive way to change the representation in the continuous domain is derived from Covariance Matrix Adaptation (CMA). In this case, adaptive encoding recov...

متن کامل

Variable Metrics in Evolutionary Computation

This thesis considers variable metrics in the context of stochastic, function-value free optimization in continuous search spaces. We argue that the choice of a (variable) metric or equivalently the choice of a coordinate system can be decoupled from the underlying optimization procedure. An adaptive encoding procedure is presented, that is in principle applicable to any optimization procedure,...

متن کامل

A Comparative Study of CMA-ES on Large Scale Global Optimisation

In this paper, we investigate the performance of CMA-ES on large scale non-separable optimisation problems. CMA-ES is a robust local optimiser that has shown great performance on small-scale nonseparable optimisation problems. Self-adaptation of a covariance matrix makes it rotational invariant which is a desirable property, especially for solving non-separable problems. The focus of this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011